Get fast, custom help from our academic experts, any time of day.

Place your order now for a similar assignment and have exceptional work written by our team of experts.

✔Secure ✔ Original ✔ On Schedule

Instructions
Provide the code that parallelizes the following:

library(MKinfer) # Load package used for permutation t-test
# Create a function for running the simulation:
simulate_type_I <- function(n1, n2, distr, level = 0.05, B = 999,alternative = "two.sided", ...) { # Create a data frame to store the results in: p_values <- data.frame(p_t_test = rep(NA, B),p_perm_t_test = rep(NA, B),p_wilcoxon = rep(NA, B)) for(i in 1:B) { # Generate data: x <- distr(n1, ...) y <- distr(n2, ...) # Compute p-values: p_values[i, 1] <- t.test(x, y, alternative = alternative)$p.value p_values[i, 2] <- perm.t.test(x, y,alternative = alternative,R = 999)$perm.p.value p_values[i, 3] <- wilcox.test(x, y,alternative = alternative)$p.value } # Return the type I error rates: return(colMeans(p_values < level)) } 2. Provide the code that runs the following code in parallel with 4 workers (with mclapply): lapply(airquality, function(x) { (x-mean(x))/sd(x) })

Get fast, custom help from our academic experts, any time of day.

✔Secure ✔ Original ✔ On Schedule